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FOCUSING OF SHOCK WAVES IN A HIGHLY VISCOUS FLUID* 

V.N. LIKHACHEV 

The method of combined asymptotic expansions is used to solve the problem 
of the focusing of a shock wave (in a weakly compressible medium of high 
viscosity. Asymptotic forms of the solution are constructed in a number 
of spatial zones. The focusing zone is described by its asymptotic form 
obtained by combining it with the solution corresponding to viscous 
geometrical acoustics. The reflection of a shock wave formed as a result 
of velocity jump near one of the foci of the ellipsoid of revolution is 
discussed as an example. Analytical relationships descrbing the 
focusing zone around the second focus are obtained. It is shown that at 
the focus itself the wave profile has an antisymmetric form, and the 
compression wave is followed by a rarefaction wave of the same form. 

The problem of the formation and propagation of a spherically symmetrical shock wave in a 
highly viscous-fluid was solved in /l/. The wave reflected from an ellipsoid also becomes 
spherical, although it is no longer spherically symmetrical. 

The structure of the zone in which a shock wave of moderate intensity is focused can be 
described, if at least one of the following factors is taken into account, namely the 
non-linearity and/or dissipation. If both factors are disregarded, then the wave amplitude 
will be governed by the law of non-viscous geometrical acoustics up to the focal point, and 
the focusing zone will degenerate to a point /2/. In the case of fairly strong shock waves 
the curved front will straighten because of the non-linearity, and therefore the wave 
intensity may not increase strongly and the focusing zone will shift from the geometrical 
focus and will increase /3, 4/. In devices where exact focusing is needed, low intensity 
waves are used. 

The structure of the solution in the zone of focusing of a weak shock wave is determined 
by the dissipation, although the equations which have to be solved do not contain viscous 
terms in the principal approximation. An analogous proposition was formulated in /5/, 
stating that the focusing zone can be described within the framework of linear non-viscous 
acoustics. Unlike the present work, in /5/ the effect of non-linearity instead of viscosity 
on the focusing of the sonic waves was investigated, and instead of the combining procedure 
the process of matching the solutions at a certain, completely specified distance from the 
focus, was used. 

If the reflector or radiator has a boundary, then a diffraction wave will form in its 
neighbourhood and will arrive, in the linear formulation, at the focusing zone simultaneously 
with the focusing wave itself. In the present paper, the effect of the diffracted wave is 
neglected, as well as the effect of the penumbral zone. It is suggested that in order to 
determine the effect of this zone it is better to use the approach given in /6/ where it is 
suggested that the solution of geometrical non-viscous acoustics be combined with the 
solution of a certain diffusion equation describing the flow in the neighbourhood of the 
focus. The latter equation can be reduced, after some reduction, to the equation of 
non-linear sonic bundles /7/. However, no solution of the problem is given in /6/, and it is 
not at all clear how a solution can be obtained by confining oneself to two asymptotic zones 
without taking into account the penumbral zone away from the focusing zone. 

The method of combining asymptotic expansions in a small parameter characterizing the 
weak compressibility of the medium which we use below, was used earlier to solve a number of 
one-dimensional problems /l, 8, 9/. Here it is generalized to the case of converging shock 
waves. 

1. Fozwdution of the problem. Let us consider a reflector formed by part of an ellipsoid 
of revolution cut by a plane perpendicular to the axis of rotation. A spherically sym- 
metrical explosion occurs at the focus which lies nearer to the reflector, and the explosion 
is modelled by a piston producing an initial velocity jump equal to o,, on a spherical surface 
of radius F, with centre at the focus in question. Thus the problem is axisymmetric. Using 
the characeristic parameters: the characteristic temperature T, and the density of the 
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unperturbed medium For we introduce the dimensionless quantities 

Here P is the pressure, b is the velocity vector in a Cartesian system of coordinate 

zk* f is time, T is the temperature, F is the entropy and d and 6 are the lengths of the 
semimajor and semiminor axes of the ellipsoid. 

We will assume that the perturbations are such, that the density of the medium changes 
only slightly p = &,(I + ep),. where the small parameter e = (dPld&&. Expanding the pressure 

P&F) in a series in p,S about the unperturbed state and introducing the expansion coef- 
ficients lc and k,, we can write the system of equations of motion of a high$y viscous fluid 
in the form 

(1 + ep) dU/dt = - Vp - ke’pvp - k,Vs + qe+*AU + p~--‘l*V div U 

edp/dt + (1 + ep) div U = 0, (1 + ep) Tds/dt = xVT + 

l/ace-‘la (div U)a + l/2pe”/* (XJ~/~x, + XIk/8x, - 

%6ikaul/axd’d; d/dt = a/at + UV 

(1.1) 

Here z,ij are the coefficients of bulk and shear viscosity, and f is the thermal con- 
ductivity. 

We will assume that the dimensions of the reflector are large compared with 7,: 

a = co&l* - g-'In, b = bee-'I= - E-% 

The spherically symmetric shock wave which appears under the conditions given above is 
formed in a short time t - dl* (the time is measured from the instant at which a velocity 
jump appears), and, at times t - 1, has a Gaussian profdle /I/ 

p = U,&-‘1. = G (t, r1 + te-‘19) 

G(t,r)=-$& [+I, a=C+p 

(1.2) 

where ul,rl are the radial component of the velocity and the 
the explosion occurred. 

Relation (1.2) shows that the width of the shock wave is 
of the high viscosity, while the characteristic spatial scale 
fore, the wave (1.2) propagates as a locally hyperbolic wave, 
reflector it will produce an exponentially small pressure and 
neighbourhood of the reflector. 

distance from the focus at which 

of the order of s-V. by virtue 
of the problem is 
and until it reachel-'I'* 

There- . . 
.the 

velocity perturbations in the 

2. Construction of the refZected wave. We shall show that away from the reflector edges, 
at distances of a much higher order of magnitude thane-*IL, i.e. much greater than the wavelength, 
the wave (1.21 will be reflected like the usual wave in a non-viscous fluid. Let us introduce, 
near an arbitrary point M of reflector, away from its edges, the Cartesian coordinates x.w, yMT 

zM with origin at M. Then the zone of reflection will be characterized by the scales of 
the variables 

where tM = rIMeI/*, TIM is the distance between the first focus and the point M. The scales 
of the variables sought are p - E-'/., u - $14. 

We obtain, in the principal approximation, 
viscous acoustics for p, U. 

the usual system of equations of linear non- 
The asymptotic form of (1.2), in the zone in question, will take 

the form 
p = U&" = G (tM, rl + te-“‘) (2.1) 

We note that theasymptotic form (2.1) satisfies this system of equations. 
The condition of adhesion imposed at the first boundary on the velocity of flow in a 

viscous fluid, will lead to the appearance of a boundary layer of width:much smaller than ~3. 
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Outside this zone the wave will be reflected just as in the case of an ideal fluid, and, on 
moving away from the reflector, will take the form 

o = --u,&+ = G (tM, r + tE-“* - 2a) (2.2) 

where r is the distance to the second focus towards which the reflected wave is moving, n, is 
the radial component of the velocity in a spherical system of coordinates with centre at the 
second focus, and the remaining velocity components are equal to zero. 

Both (2.1) and (2.2) satisfy the equations of linear non-viscous geometrical acoustics, 
and their superposition also satisfies the zeroboundaryconditions for the normal component 
of the velocity. In the superposition of (2.1) and (2.2) the solution (2.1) becomes, as the 
time increases and on moving away from the reflector, exponentially small and only a single 
converging spherical wave (2.2) remains, with a certain distribution of the amplitude along 
its surface. 

In what follows, we shall neglect the effect of the penumbral wave appearing as a result 
of reflection of the incident wave from a point at a distance of the order of ~“I. , from the 
edge of the reflector. 

The solution (2.2) will hold when the wave moves away from the reflector by a distance 
Ar satisfying the condition e-'l*< Are e-‘l?. It follows, therefore, that solution (2.2) rep- 
resents an intermediate asymptotic form obtained when the solution describing the ais- 
tribution of the parameters in the reflection zone (Ar - e-'/a), is combined with the solution 
of geometrical acoustics (Ar - E-V* ). The high viscosity of the medium means that it exerts 
its influence on the solution in the principal approximation. 

3. the construction of a converging reflected wave in the zone of geometrical acoustics. 
Let us denote by U, x, y, z the velocity vectors and Cartesian coordinates attached to the 
second focus towards which the reflected wave travels. We take the scales of the variables 
in the form 

5 = z&i' , y = y&l*, z = z,s’11, t - 1 

u = ew, (x,, y,, z#), t, e) + 6,U, (x0, y,, %I t, 0) + . . . 

p = e/lap1 + 6a8-‘~y32 + . . ., s - maX (E, xc) 

8 = ss-‘@ (50, Y,, 6, t) 

Substituting these expansions into (1.1) we find that when the thermal conductivity is suf- 
ficiently small, the change in entropy is also small. 

For a first approximation the system takes the form 

v, = rajaz,,ajaY,, ajaz,) 

In the second approximation (6, = e"., 6, = ~“4) 

From (3.1) it follows that 

1 V,Q, 12 - (acwaty = 0, u, = h (x0, Y,, zO. t, e) v,m,, p1 = --hawat 

Determining h from the condition of compatibility of the system (3.21, we obtain 

(3.2) 

The reflected wave has a spherical form (2.2) near the reflector, and it is convenient 
to introduce here the spherical coordinates 

.z,=r,coscpcos*, y, =r,sincpcos$, z,=r,sin$ 

Then, taking into accout the initial condition, we shall have @ = -r,, - t. From (3.3) 
we obtain, in terms of the variable A = hr,, &, = t + ro, q. = t - ro, 

aAiaq, - 1/,aa2Aiaf32 = 0 (3.4) 

Let us combine the solution within the wave reflection some with the solution of (3.4) 
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which we shall take in the form 

(3.5) 

In the intermediate zone the asymptotic form of the solution has the form (2.2). After 
combining the solutions we find that 

Taking into account the fact that outside the region &,-2a"- & the right-hand side 
of the first equation of (3.6) is exponentially small, we finally obtain the asymptotic form 
in the zone of geometrical acoustics 

P= 
e-“*A, ($) 

exp 
[ 

-(L - 2Q")P 

rov-V=?i 2ae"' (ZIP - rO) 1 
In the neighbourhood of the second focus r,+O and solution (3.7) has a singularity, 

This implies the need to derive another asymptotic expansion at this point. 

4. Construction of a solution in th4z focusing zone. The scales of the variables in this 
zone are: 

I = 5*E-“*, y = y*e-lk z z Z*E-‘/, t = 2~’ + t,e’/a, 
u = &*U*, p = “*Ap* 

In the principal approximation we have 

XJ,pt, = - V,p,, dp&, i div, U, = 0 (4.1) 

Changing to the variables & = t* -i-r*, r* = f&" -i-Yea + z*',$, cp, we obtain, for the 
axisymmetric flow, 

Separating the variables p* = Y,(r,,+) Y, (El), Y = R (r*) 51 ($) and taking one of the eigenvalues 
as complex, we obtain 

+ + iaY, = 0, ’ 
1 

q-&(sin$$-)+qQ=O 

&(r*‘-$-)-2air*-$(r*R)-*I?=0 

(4.2) 

The solution will be bounded only when q = n(n + I), where n is an integer. In the 
general solution (4.2) we must also have only functions that are bounded as r,+O. As a 
result, we can seek the solution near the focus in the form 

(4.3) 

where P, are spherical functions, Jv n is a Bessel function, the summation is carried out 

from n=O to n=m, and the integration in w is from --oo to j-00. 
The above expressions can also be obtained more rapidly from the initial system. 
Let us combine (4.3) and (3.7). The intermediate asymptotic form (3.7) is obtained in 

the form (r. +O) 

(4.4) 
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and the intermediate asymptotic form (4.3) (r++ W) is 

e.&" 1 
p= 2fJ.C r* 

~-Real{~P,(cos~)[S~exp(--teS*)x 

VI exp i 2 
(( 

++ do+ 
)i s 

C,(o) 
- exp 
6 ( ( 

-i -E$+$))X 

exp(- io(t* - r*))do I> 

(4.5) 

In the second integral of (4.5) we take the asymptotic form with E, = Con& t*+--00, 

r’++w, i.e. the exponent of the second integral tends to -iom. 
term of the asymptotic form conta&rs only the first integral. From 
see that we must take c,,(o) = I/of(o) B,,, where B, is independent 
will occur if 

~P,(cos$)exp(i(nv,/2 + n/4))B,, = I/nla"A,(q) 

From this it follows that 

Therefore, the principal 
the matching condition we 
of 0, e, = 1. Matching 

f(m)= JGa"lnexp(- cdq 

Finally, near the focus the solution will take the form 

P= C 
$$Real {~P,,(cos$) B,,s VG exp(-au%@-- iat*)% &I (4.6) 

5. Determination of the pressure at the focus. Taking into account the fact that J,n 

(r&)/V/r+ + I/a (Yg + 1) when n = 0 and that the limit is equal to zero when n#O, we 
can obtain from (4.6) at the focus 

Pf(U =- K(t,)f&($)sin$d$ 

K(t,) = (4e".a"i.a)-'tO,exp(- t,2/(4a"a)) 

(5.1) 

If we assume that an intermediate asymptotic zone exists in which the wave profile is 
(4.4) and is described at the same time by system (4.11, we can specify the initial conditions 
when t, = t,' < 0 (r* = -t,"): 

P ILO = B exp [- V*O + r*Y 
4&z 

&J 
at, f,' = - 2&z I 

L((t*” + r,)exp [- (t*l-J2P ] 

(5.2) 

Then, using Poisson's formula, we obtain an expression differing from (5.1) in having a 
multiplying factor [1 + (a"alt, -&)/&"I on the right-hand side. However, taking into account 
the fact that the initial conditions can be taken in the form (5.2) only outside the focusing 
zone, we can pass in the latter expression to the limit as t*o+ - 00. This will yield 
relation (5.11. Thus we see that both methods of determining the dependence of the pressure 
on time at the focus are asymptotically equivalent. It is difficult to use Poisson's formula 
near the focus; we must therefore use the solution in the form (4.6). 

The function A,($) depends on the reflecting system. For the case in question we have 

A,(+)= [l/%(1 - 26cos$ + cY)~-', 6 = l/a2-- bz/a 

If the reflector represents part of an ellipsoid with an aperture angle of I$,,, we can 
obtain the following expression for the pressure at the focus: 



Pf V*) = *g (6), g (6) = + In i + 5-$4:“” ft 
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(5.3) 

From (5.3) we obtain, as 8+0, the dependence of the pressure on time, at the focus, 
for a spherical reflector 

PlG*) - - $$(I 

Taking $, = n, we obtain a relationship at 
plete ellipsoid or complete sphere. In the latter 
of the focusing of a spherically symmetrical wave. 

- cosw (5.4) 

the focus for the reflection from a com- 
case we obtain the solution of the problem 

Thus we see from (5.1) that the wave has an antisymmetric profile at the focus. Thecom- 

pression wave is followed by a rarefaction wave of the same form. We see that the maximum 
and minimum pressures at the focus are reached at t,==qcJfzz and are equal in modulus to 

pfman = g (6)s'/a/(4 1/2ne a%) 

The dependence of the wave amplitude on the eccentricity and aperture angle of the 
reflector is given by the function shown in the figure for various aperture angles of the 
ellipsoid (curves l-5 correspond to the angles q0 = n, 5~16, ni2,n13, 9x16). When 6-+1, all 

the curves tend logarithmically to infinity. When the angle q0 decreases, so does the 
amplitude of the wave. This decrease may be compensated by increasing the eccentricity of 
the ellipsoid. Although the dependence of the amplitude 08 the eccentricity has a monotonic 
form for each aperture angle, the increase agIL% itself depends on q0 non-monotonically. 
When the values of I$~, are close to n and zero, there is a slight increase in amplitude for 
small 6, but within the interval between n and zero the increase becomes larger (see e.g. 
curve 3 whose slope for small 6 is greater than that of curves 1 and 5). 

6. Con~&si~~s. The I lse of the method of combined asymptotic expansions has enabled us 
to obtain an analytic solution of the problem over the whole 
space-time domain. The possibility of constructing composite 
asymptotic forms is, however, restricted by the behaviour of the 
expansions in adjacent zones. The solution of geometrical 
acoustics in the focusing zone tends to infinity. This implies 
that the additive composite expansion acquires, at the focus, a 
redundant term equal to 

0 

From this it follows that we cannot construct a composite 

n0 expansion which could be used in the geometrical acoustics zone 

The 
profile, 
may have 
(keeping 

o.* U.” and in the focusing zone. 
The presence of viscosity means that the shock wave becomes, 

Fig.1 by the time it arrives at the focus, so diffuse, that the focus- 
ing diffraction zone can be described in the principal approxi- 
mation by the equation of an ideal fluid. 

shock wave caused by expansion, which in a highly viscous fluid has a Gaussian 
arrives at the focus in the form of an antisymmetric perturbation, and its amplitude 
increased either by virtue of the increase in the aperture angle $0 of the ellipsoid 
the lengths of the semi-axes fixed), or by virtue of increased eccentricity. 

However, as q0 decreases, the penumbral zone and the wave diffracted from the edges 
will both assume increasing importance. The gometrical acoustics approximation will cease 
to hold near the edge rays (II, =&). 

The pressure at the focus itself as well as in its neighbourhood will depend on the 
viscosity only in the combination aa" = ~oh(2~+~/3)i(C,2r,Zp,), where c, is the velocity of 
sound in an unperturbed medium. The maximum and minimum pressures at the focus are inversely 
proportional to this quantity. 

The solution (4.6) obtained can be used to calculate other focusing shock waves with 
spherical phase surfaces, and in particular for the focusing wave obtained after a plane 
shock wave is reflected from a parabolic reflector. 

Although the problem of the effect of diffraction waves has not been discussed, it is 
clear that the solution obtained here will be worse, the smaller the aperture angle of the 
focusing wave. On the other hand, when the reflector has the form of a complete ellipsoid 
and the focusing wave has the form of a complete sphere, the solution will have not have this 
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shortcoming, since in this case we have neither a diffracted wave, nor a penumbral zone. In 
this case we cannot obtain any diffusion equations within the focusing zone. These two limit- 
ing cases, namely the case of a small aperture angle of the reflector discussed in /6/, and 
a fully opened reflector, lead to basically different structures of the solution within the 
focusing zone. We can obtain a solution suitable for all cases only by taking into account 
the penumbral zone away from the focus. We note that the methods used in /lO/ do not enable 
the effect of the reflector edges on the focusing of the shock wave in a viscous fluid to be 
taken into account, since they are based on the wave acoustics of ideal media. 
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APPROXIMATE FORMULAS FOR HEAT FLOWS TOWARDS AN IDEALLY CATALYTIC SURFACE NEAR 
A PLANE OF SYMMETRY* 

1-G. BRYKINA, V.V. RUSAKOV and V.G. SHCHERBAK 

The three-dimensional flow of a chemically unstable viscous gas near a 
plane of symmetry of blunt bodies streamlined at the angle of attack, is 
considered. The investigation is carried out using a model of a thin, 
viscous shock layer. To a first approximation of the method of 
successive approximations for a uniform gas simple formulas are obtained 
for the distribution of the heat flux over the surface, referred to its 
value at the stagnation point. It is shown that for a chemically 
unstable gas the distribution of the heat flux along an ideally 
catalytic surface depends only slightly on the conditions prevailing 
within the incident flow, is determined mainly by the geometrical 
characteristics of the body, and is described quite satisfactorily by 
the formulas obtained. The accuracy of these formulas is determined by 
comparison with numerical computations carried out for bodies of various 
shapes, moving at different angles of attack along a planing trajectory 
of re-entry into the Earth's atmosphere, and during re-entry into the 
atmosphere at a constant velocity. 

1. Let us consider the three-dimensional steady flow past a blunt body of a stream of 

Vrikl.Matem.Mekhan.53,6,956-962,1989 


